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The comparison of biomacromolecular crystal structures is

traditionally based on the root-mean-square distance between

corresponding atoms. This measure is sensitive to the presence

of outliers, which inflate it disproportionately to their fraction.

An alternative measure, the percentile-based spread (p.b.s.), is

proposed and is shown to represent the average variation in

atomic positions more adequately. It is discussed in the context

of isomorphous crystal structures, conformational changes

and model ensembles generated by repetitive automated

rebuilding.
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1. Introduction

Minimizing the root-mean-square difference between two sets

of data is the most common tool of scientific data analysis. In

structural biology, it is commonly used when comparing

structural models. Proteins with the same fold, proteins crys-

tallized in different forms and proteins undergoing confor-

mational changes are some examples when similarity is

assessed by root-mean-square (r.m.s.) difference. Two major

reasons can be suggested as to why this particular measure is

used almost exclusively.

Firstly, a fast and reliable algorithm exists for minimizing

the r.m.s. difference between two sets of spatial points

(Kabsch, 1976); it is at the core of any modern structural

superposition protocol. Most of the effort in improving such

methods has been directed at finding better ways to define the

corresponding sets of atoms. Secondly, r.m.s. deviation is used

in statistics to describe random variables and thus the r.m.s.

difference between superimposed structures supposedly

reflects the underlying variation between two sets of data. It is

often compared in the crystal structure context with the esti-

mated standard uncertainty of the structure determination

itself. In this way, the r.m.s. distance between individual atoms

is judged to reflect actual structural differences when it

exceeds experimental error. For instance, when no significant

structural differences are expected [as in the case of isomor-

phous crystals (Rashin et al., 2009) or iterative refinement

(Terwilliger et al., 2007)], the r.m.s. distance is perceived to

reflect the precision of the structural model.

This interpretation of the r.m.s. difference between two

structural models is based on the implicit assumption that the

underlying probability distribution is normal. Accordingly, it

is expected that the r.m.s. difference between superimposed

structures, �R, determines the corresponding probability of

the distance, �r, between particular atoms. For instance, if the

overall �R = 0.2 Å, one would normally assume that there is

only a 5% chance of observing an atom shift by 0.4 Å or more.

It is common in science to interpret the r.m.s. difference

between two instances of a multi-parameter model as the



defining size of the element of parameter space to which a

certain fraction of measurements are confined.

Such assumptions fail in the presence of outliers that violate

the normal distribution and certain corrections are required

to account for the three-dimensional nature of the structural

models. Furthermore, outliers inflate the estimate of an r.m.s.

difference disproportionately to their fraction in the ensemble

of measurements. In application to macromolecular structures

this means that calculated r.m.s. differences between super-

imposed structures are misleading and significantly over-

estimate the effective width of pairwise distance distributions.

An alternative measure of structural variation based on

percentile analysis is proposed and applied to model super-

position.

2. Results and discussion

2.1. Expected distribution of pairwise distances

It is assumed that individual differences between atomic

coordinates (x, y, z) after structures have been superimposed

are distributed normally with a singular standard deviation

�x = �y = �z. Derivation of the three-dimensional distribution

is trivial and results in the Maxwell–Boltzmann distribution

(�r
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This distribution has a maximum density which is shifted from

the origin (the most likely interatomic distance is �r/1.51/2).

This is owing to the smaller volume available near the origin.

The cumulative distribution function (2) is compared in Fig. 1

with the one-sided normal distribution with the same �r. It

should be noted that the average interatomic distance is

hri ¼ 4�r=ð6�Þ
1=2
’ 0:92�r > 0 ð3Þ

and the r.m.s. distance is simply equal to �r.

2.2. The r.m.s. deviation is sensitive to the presence of
outliers

A small fraction of outliers can significantly inflate the

apparent r.m.s. deviation owing to the quadratic nature of the

measure. In a somewhat simplified form, let us assume that the

series of measurements contain what can be described as two

subgroups of random variables with the same mean of zero

and two different variances, �1 and �2. The relative fraction of

the second variable of higher variance is ’ and the overall

variance is

� ¼ ½ð1� ’Þ�2
1 þ ’�

2
2 �

1=2: ð4Þ

The ‘minority’ variable represents a group of outliers, which in

the context of structural comparison may be a part of the

structure in which significant differences are observed that

exceed those originating from experimental error. The

amplitude of outliers is characterized by the Z score Z = �2/�1

and the variance inflation parameter is defined as p = �/�1.

Evidently,

p ¼ ½1þ ’ðZ2 � 1Þ�1=2: ð5Þ

The inflation parameter approaches unity when ’ � 1/Z2.

Fig. 2 shows how the variance is inflated with increasing

fraction of outliers for various Z values. Values as high as

Z = 10 are quite expected in structural comparison; for

example, the variation driven by experimental error may be

as low as 0.1 Å, whereas some elements of the structure may

differ by as much as 1 Å. It is noteworthy that even a small

fraction of such outliers can significantly inflate the overall

r.m.s. distance.

If these results are placed in the context of macromolecular

structure comparison it becomes clear that most models will

have inflated r.m.s. differences. The overall statistical error of

crystal structures is estimated by the Cruickshank DPI (Blow,

2002; Murshudov & Dodson, 1997) and in most cases is

�0.1 Å. With about 10% of residues deviating by an r.m.s.

distance of 0.6 Å, the overall r.m.s. difference will double. As

a result, the overall r.m.s. difference of 0.2 Å is used to char-

acterize the observed differences between models and the

0.6 Å outliers are not considered as such. Variations as large as

1 Å are routinely included in the r.m.s. distances calculated by

modern algorithms and only 3% of the model (as little as 11

residues per 40 kDa protein) deviating by such an amplitude

will approximately double the calculated r.m.s. distance.

Outliers contribute disproportionately to the overall r.m.s.

distance because of the quadratic nature of the measure. For

example, if an atom shift is ten times that of an average atom,

its contribution is equivalent to 100 ‘average’ atoms.

2.3. Percentile-based spread

The variation in interatomic distances can be characterized

by a direct least-squares fit of the histogram of distances to

(1) to obtain �r. Appropriate algorithms are implemented
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Figure 1
Cumulative distribution function according to (2). The normal distribu-
tion (dashed line) is shown for comparison.



and the software is available as part of ShakErr (http://

shakerr.sourceforge.net). To characterize more complicated

cases, a multivariate analysis is also available in which the

distribution of interatomic distances is approximated by

multiple components each conforming to (1).

In addition, an alternative singular measure (referred to in

the following as percentile-based spread or p.b.s.) is proposed

based on the following consideration. Assuming that the

interatomic distance variation follows (1) with single �r, the

latter will correspond to the �60.8% percentile. Hence, the

overall data spread can be quickly estimated. This approach is

similar to the interquartile analysis used in descripive statistics.

The presence of other components in the distance distri-

bution skews the p.b.s. to higher values. Nevertheless, it

remains a very good estimate of the variation of the principal

component unless the minor component(s) contribute more

than �40% to the overall distribution (see Fig. 3). The infla-

tion of the p.b.s. for increasing variation of the secondary

component is approximately equal to the fraction of this

component in relative terms. The stabi-

lity in the presence of outliers is an

important advantage of the p.b.s.

measure compared with the r.m.s.

difference.

The breakdown point of the p.b.s. as

the �r estimator can be further extended

by using a lower percentile point (e.g.

50%) with an appropriate correction

factor corresponding to the percentile

of the Maxwell–Boltzmann distribution.

It must be noted, however, that

instances of outliers comprising over

40% of the sample are better addressed

by multimodal distribution analysis.

Interestingly, minimization of the

p.b.s. instead of the r.m.s. distance does

not produce significant changes in either

the transformation required to super-

pose two structures or the p.b.s. or r.m.s.

distance values. This indicates that

while outliers inflate the r.m.s. distance

value itself, they introduce negligible

distortions in the solution of the

superposition problem.

2.4. Isomorphous crystal structures

When a protein crystallizes in

multiple crystal forms, the structures

are expected to be largely isomorphous,

with some variation driven by crystal

contacts. For example, when tetragonal

and triclinic forms of hen egg-white

lysozyme [PDB entries 3a8z (Takafumi

et al., 2010) and 3lzt (Walsh et al., 1998)]

are compared, the structures are

essentially identical but produce a

relatively large overall r.m.s. distance of 1.34 Å. The distri-

bution of interatomic distances (Fig. 4) clearly shows that the

majority of atoms shift by less than 0.8 Å. Fitting the distri-

bution to (1) produces a much smaller estimate of the

underlying �r of �0.39 Å. Comparison of the lysozyme

structure in the tetragonal lattice to that in monoclinic (PDB

entry 1hf4; Vaney et al., 2001) and orthorhombic (PDB entry

2aki; Artymiuk et al., 1982) space groups produces similar

results: the overall r.m.s. distances (0.94/1.10 Å) are much

larger than the estimates based on the fit to (1) (0.28/0.26 Å).

The overall r.m.s. distance is reduced when structures

refined for the same crystal form are compared. For example,

Vaney et al. (1996) compared regular tetragonal lysozyme

crystals with those grown under microgravity conditions. The

overall r.m.s. distance is reduced to 0.15 Å, which is still

significantly higher than the �r of �0.05 Å determined from

fitting to (1). Similar results are observed for orthorhombic

lysozyme crystals compared with isomorphous crystals grown

in a strong magnetic field (Saijo et al., 2005; overall r.m.s.d. of
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Figure 3
Relative inflation of the p.b.s. versus the fraction of outliers and the Z score. The second panel
corresponds to the minor (less than 20%) presence of outliers.

Figure 2
Relative inflation of the r.m.s.d. versus the fraction of outliers and the Z score. The second panel
corresponds to the minor (less than 20%) presence of outliers.



�0.75 Å and �r of �0.11 Å). Interestingly, �r is close to the

Cruickshank DPI of these structures (�0.07 Å), indicating

that the variations in atomic positions are mostly a conse-

quence of the limited precision of the refined models.

To account for the possibility that the crystal may contain

subgroups of atoms that exhibit different degrees of positional

variation, backbone and side-chain atoms were compared

separately for the lysozyme structures described in Vaney et al.

(1996). Fig. 5 compares the r.m.s. distance for various atom

groups with the corresponding �r obtained by fitting the

distance distribution to (1). For all the protein atoms the r.m.s.

distance inflates the estimate of the underlying variation by

threefold. The two measures are much closer when only the

backbone atoms are compared. However, this does not mean

that the side-chain atoms have a much higher positional

variability, but rather that the majority of outliers are side-

chain atoms.

It is expected that atoms with high B factors will be more

likely to result in outliers. For instance, some such atoms are

not well defined in the corresponding electron density and

may be placed in rather different positions upon independent

refinement. Removing 10% of atoms with the highest B

factors from the comparison has an effect similar to that of

removing side chains. In fact, for backbone atoms with low B

factors the r.m.s.d. matches �r within less than 20% (0.055/

0.047 Å). Thus, for perfectly isomorphous structural models

most of the inflation of the r.m.s. difference arises from side

chains with relatively high B factors. However, this does not

extend to the structures discussed below, which contain actual

differences that cannot be accounted for by model-building

uncertainties.

2.5. Conformational changes

The percentile-based spread is independent of the ampli-

tude of the atomic shifts caused by conformational changes

(assuming that such movements are local and only cover a

fraction of the protein molecule). Therefore, it allows the

identification of conformational changes by comparing them

with the baseline variation in the rest of the structure. Two

examples of such analysis are discussed below.

2.5.1. Anti-cocaine antibody M82G2. Structural compar-

ison of the variable domains of this antibody in apo and

liganded forms (Pozharski et al., 2005) shows rearrangement

of the CDR loops upon ligand binding. The overall r.m.s.d.

between the variable domains is 0.69 Å, which is significantly

higher than the percentile-based spread (0.20 Å). Multivariate

analysis shows the presence of a significant subpopulation

(�20%) of atoms with a much higher underlying variation of

�0.47 Å. Fig. 6(a) shows that these larger shifts are primarily

associated with the CDR loops that interact with the ligand.

Remarkably, restricting the structural comparison to back-

bone atoms with B factors of less than 45 Å2 (in both struc-

tures hBi ’ 30 Å2) does reduce the r.m.s. difference but not to

the extent seen above with isomorphous structures. Moreover,

even in the limited structural comparison multivariate analysis

indicates the presence of two major populations of atoms.

Approximately an 85% majority of low-B-factor backbone

atoms are governed by an underlying variation of 0.15 Å, as

expected from the Cruickshank DPI of the two structural

models. The remaining 15%, which are mostly located in the

CDR loops, show positional shifts of �0.48 Å corresponding

to the induced fit upon ligand binding.

2.5.2. Anti-morphine antibody 9B1. In this case, no

dramatic structural rearrangements of the CDR loops were

observed upon ligand binding (Pozharski et al., 2004). For the

constant domain overall, the r.m.s.d. is approximately twice

the value of the p.b.s. (0.35/0.17 Å), which can be attributed to

disordered side chains since the two measures converge when

only the backbone atoms are considered (0.18/0.15 Å). Inter-

estingly, a similar convergence is observed for the backbone

atoms of the variable domain, but both measures show a
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Figure 5
Variations in atomic positions for different groups of atoms comparing
regular lysozyme crystals with those grown in microgravity. Black bars,
r.m.s.d.; gray bars, �r as determined by fitting to (1).

Figure 4
Distribution of atomic shifts for the alignment of tetragonal and triclinic
forms of lysozyme. The arrow shows the r.m.s.d. The dashed line
corresponds to the least-squares fit to (1).



relatively high variation in atomic positions (0.35/0.33 Å). This

is significantly higher than what is expected based on the

Cruickshank DPI and cannot be explained by a higher degree

of disorder since the atoms in both domains have an identical

average B factor (hBi ’ 30 Å2).

Further analysis reveals that the r.m.s.d. and p.b.s. are

dramatically reduced when single immunoglobulin-fold

domains, VL and VH, are considered. The corresponding

values of the r.m.s.d. and p.b.s. are 0.25/0.21 Å and 0.20/0.16 Å,

respectively. This supports the conclusion reached in

Pozharski et al. (2004) regarding the domain-closure motion in

9B1 upon ligand binding. Unlike M82G2, the observed

structural variations are not localized in the binding site but

rather are spread throughout the structure, as shown in

Fig. 6(b).

2.6. Model ensembles generated by automated rebuilding

The refinement of macromolecular crystal structures is

known to suffer from significant systematic errors that prevent

the corresponding measure of refinement quality, the R factor,

from reaching the theoretical minimum (Vitkup et al., 2002). It

is widely believed that the two major problems are inadequate

modeling of bulk solvent and heterogeneity of the protein

structure owing to the anharmonic nature of atomic motions

that cannot be captured by existing models. Indeed, the

structures of small molecules which do not contain solvent and

can be adequately described by harmonic dynamics are

routinely refined to much lower R factors than their macro-

molecular counterparts.

Attempts have been made to introduce model ensembles to

capture the heterogeneity of protein structures (DePristo et

al., 2004; Furnham et al., 2006; Gill et al., 2002; Levin et al.,

2007; Pellegrini et al., 1997; Terwilliger et al., 2007; van den

Bedem et al., 2009). It has been suggested that iterative

rebuilding produces ensembles of models that are sensitive to

protein dynamics (DePristo et al., 2004); this claim has sub-

sequently been disputed (Terwilliger et al., 2007). The auto-

mated model rebuilding produces model ensembles that are

characterized by r.m.s. variations in atomic positions that far

exceed the expectations based on measures of overall model

precision such as the Cruickshank DPI (but more closely

match the maximum-likelihood estimate of coordinate error

according to the report; such estimates are expected to be

higher and are somewhat meaningless for an unfinished

structural model; Murshudov & Dodson, 1997). Based on this

observation, it has been widely assumed that the systematic

errors in macromolecular models exceed the statistical errors

owing to variation in the underlying data. Analysis of the

distribution of variations in atomic positions in model

ensembles generated in Terwilliger et al. (2007) indicates that

outliers contribute disproportionately to the r.m.s. measure.

Results for structures at different resolutions are shown in

Table 1. It is noteworthy that the core variation is lower than

the Cruickshank DPI. This suggests that properly rebuilt

fragments of the model ensemble vary according to the actual

instability of the refinement protocol, which is much less than

the DPI measure which reflects the statistical error of the

diffraction experiment. The only exception to this is the lowest

resolution structure in the set, 1c1z (Schwarzenbacher et al.,

1999). The ensembles generated for this low-resolution

structural model showed severe geometry problems (for

instance, �14% of residues are found in disallowed regions of

the Ramachandran map).

Furthermore, the majority of the outliers correspond to

areas of the model with either poor geometry or poor fit to the

electron density (or both). Some examples are shown in Fig. 7

and the quality of the individual ensemble models deteriorates

when the resolution is lower. It appears that the variation in

the model ensembles reflects the quality of the automated

rebuilding, not the precision of the crystal structure. Intro-

duced systematic errors can potentially reduce the quality of

the rest of the model, in addition to the detrimental effect of
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Figure 6
Spatial location of atoms that belong to the ‘larger shift’ population
(corresponding to thicker tubes) in the variable domain of antibodies
M82G2 (a) and 9B1 (b).



removing water molecules and ligands [some of the structural

models discussed in Terwilliger et al. (2007) had large ligands

such as heme which were removed prior to analysis].

The model ensembles were inspected to correct various

errors introduced by automated rebuilding. To assist the

model-ensemble repair, a cluster analysis-based algorithm was

used. In this approach, groups of atoms (residues, backbone

and side-chain atoms) are treated as points in 3N-dimensional

space. Instances from ensemble models are clustered using

k-means clustering. The main (largest) cluster is identified and

the distances between clusters are normalized by the r.m.s. of

their radii. If this normalized distance between clusters is

below a predefined cutoff value (i.e. if there is a substantial

gap between clusters), the models that belong to the minor

cluster are shifted to a random position within the main

cluster. The r.m.s. diameter of the main cluster must be below

a certain cutoff level (0.5 Å in this work) to assure that

disordered residues are ignored. This algorithm was very

efficient in correcting certain types of errors in model

ensembles, such as symmetrical side-chain flips and lone

incorrect models. The resulting models were subjected to

refinement in REFMAC (Murshudov et al., 1997) and visually

inspected in the context of the corresponding electron density.

Several common types of errors were identified and are listed

below.

(i) Singular incorrect models. This is the most obvious type

of error and its contribution to the overall r.m.s.d. reflects the

inaccuracy of automated rebuilding. Some of these errors may

be the consequence of an incorrect choice of initial rotamer,

while others may be influenced by elements that are excluded

from the structure, such as cofactors, water molecules and

unconventional amino acids.

(ii) Flipping of quasi-symmetrical residues. Asp, Glu, Asn,

Gln and His can be placed into the same fragment of electron

density in two ways. Sometimes the correct orientation may be

deduced from B factors and/or hydrogen-bonding patterns,

while for Asp and Glu the two orientations are equivalent and

simply refer to the naming of the oxygen atoms. Alternating

the orientations of side chains in the model ensemble artifi-

cially inflates the r.m.s.d. while not providing an actual alter-

native model.

(iii) Alternate conformers. For residues that in fact adopt

alternate conformations, the model ensemble obtained by

automated rebuilding will include both rotamers. While this is

an important feature of a crystal structure, its contribution to

the inflation of the r.m.s.d. is misleading. The correct way to

describe the situation is to introduce alternate conformations;

indeed, the atomic positions are known with much better

accuracy than the distances between alternate conformers. In

our analysis, a single conformer was introduced whenever

possible. This left the model incomplete, but allowed us to

dissect the contribution of this type of error to r.m.s.d. infla-

tion.

(iv) Disordered residues. When no electron density is found

to support a particular conformation, automated rebuilding

produces a diverse set of rotamers. These may inflate the

r.m.s.d. by as much as an order of magnitude (see below),

resulting in a misleading estimate of the uncertainty in the

coordinates of individual models. As described below, dis-

ordered atoms were removed at the last step of the model-

ensemble analysis.

The results of the repair of model ensembles from Terwil-

liger et al. (2007) are shown in Table 2. After correcting the

modelling errors described above, except for the disordered

residues, an average of a 3.6-fold reduction in the r.m.s.d. was

observed. 1bmb (Ettmayer et al., 1999) exhibited the smallest

reduction (�1.5-fold). This is the structure of a small protein

refined against high-quality data, resulting in very few mis-

placed residues. In contrast, the r.m.s.d. for the 1c1z model

ensemble was reduced almost eightfold. This is the lowest

resolution (2.87 Å) structure included in the analysis and it

contained multiple regions with poorly defined density where

automated rebuilding produced models with impossible

geometry.

Removing disordered atoms from the models resulted in a

dramatic decrease of the r.m.s.d. (average of �ninefold).

Interestingly, the most significant decrease (�30-fold) was

seen for 1bmb, while the decrease for 1c1z was relatively

modest (�fourfold). Some correlation is observed between

the fraction of the model that is disordered and the reduction

in r.m.s.d. upon the removal of disordered residues, but the

latter is also influenced by various random factors such as the
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Table 1
Model ensembles obtained by automated rebuilding in Terwilliger et al. (2007).

R.m.s.d. and �r are shown for all atoms, for backbone (bb) and for side chains (sc). DPI was calculated using the statistics reported in the PDB and the following
expression: DPI = (Natoms/Nreflections)

1/2[(dminRfree)/(completeness)1/3].

Ensemble r.m.s.d. (Å) �r (Å)

PDB code dmin (Å) DPI (Å) All bb sc All bb sc Reference

1a0j 1.70 0.131 0.357 0.054 0.560 0.014 0.013 0.018 Schrøder et al. (1998)
1a3n 1.80 0.128 0.319 0.025 0.476 0.017 0.015 0.021 Tame & Vallone (2000)
1bmb 1.80 0.116 0.330 0.052 0.487 0.012 0.010 0.014 Ettmayer et al. (1999)
1aof 2.00 0.138 0.311 0.053 0.472 0.018 0.016 0.022 Williams et al. (1997)
1c2t 2.10 0.261 0.462 0.135 0.654 0.045 0.041 0.054 Greasley et al. (1999)
1uyi 2.20 0.155 0.369 0.080 0.540 0.023 0.021 0.029 Wright et al. (2004)
1rg5 2.50 0.140 0.366 0.150 0.549 0.027 0.024 0.031 Roszak et al. (2004)
1p4t 2.55 0.230 0.545 0.286 0.724 0.048 0.043 0.060 Vandeputte-Rutten et al. (2003)
1cqp 2.60 0.295 0.449 0.125 0.650 0.042 0.037 0.049 Kallen et al. (1999)
1c1z 2.88 0.207 1.203 0.634 1.622 0.209 0.196 0.240 Schwarzenbacher et al. (1999)



degree of diversity in the rotamers produced by automated

rebuilding.

Interestingly, the p.b.s. also decreased upon model repair/

correction. The effect was smaller compared with that exerted

on the r.m.s.d. (�eightfold versus �24-fold average decrease).

Nevertheless, it indicates that model errors affect the rest of

the structure, resulting in a global decline in model quality.

The average final r.m.s.d. of the model ensembles is

�0.02 Å, which is significantly less than the initial variation of

�0.5 Å. The gap between the r.m.s.d. and the p.b.s. is reduced

when model errors are corrected (the average final p.b.s. for all

the models analyzed here was �0.01 Å). It is important to

emphasize that these values include all atoms in the model.

This suggests that the instability of positional refinement

contributes significantly less (�0.01 Å) to the precision of

crystallographic models and the inflation of variation in model

ensembles produced by automated rebuilding arises from the

introduction of systematic errors. It is likely that statistical

errors (e.g. the uncertainty in

measured intensities) constitute

the major component of the

uncertainty in crystal structure

models (the average DPI of the

analyzed models is �0.2 Å).

2.7. Two sources of sliding
variance: model precision and
actual changes

The above considerations are

independent of the actual source

of the deviation of the distance

distribution from the theoretical

prediction given by (1). Our

major concern so far was the

correct estimation of the varia-

tion corresponding to the main

(principal) component. Several

possible sources of the outliers

are discussed below.

Naturally, actual structural

differences that exceed the

precision of the structural model

will produce deviations from the

theoretical prediction. To this

end, outlier analysis may help to

identify conformational changes

in protein structures. However,

this should be performed with

caution since different parts of

the model may be determined

with varying precision. Such

variations throughout the model

are likely to correlate with the

atomic displacement parameters

(Cruickshank, 1999). In other

words, some atoms may show

higher positional variation simply

because they are not as well

defined by electron density. This

factor on its own may produce

multivariate distance distribu-

tions.

Another possible source of

outliers are modeling errors. An

example of this discussed above is
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Figure 7
Examples of systematic model errors introduced by automated rebuilding. Each panel shows the correctly
placed model on the left compared with incorrect placement on the right. Electron density was calculated
using PHENIX (Adams et al., 2010) and rendered with Coot (Emsley et al., 2010). (a) Glu77 from PDB
entry 1a0j (incorrect side-chain rotamer). (b) Trp522 from PDB entry 1aof (incorrect side-chain rotamer
which may be a consequence of the nearby water molecule). (c) Met106 from PDB entry 1aof (side chain
misplaced to account for the electron density of a missing heme ligand; only the difference density map is
shown for clarity). (d) Tyr256 from PDB entry 1c1z (unacceptable geometry at low resolution).



iterative automated model rebuilding, which tends to intro-

duce model errors. These significantly inflate the r.m.s. varia-

tion and, if not numerous, can be easily identified and

corrected.

3. Conclusions

How precise are macromolecular crystal structures? Several

measures have been devised over the years to determine the

overall uncertainty of model coordinates, with the Cruick-

shank DPI and its maximum-likelihood-based variant being

the currently accepted measures of overall model precision. It

is also recognized that when structures that are expected to

be similar or even identical are compared, the r.m.s. distance

between models often exceeds what it should be assuming that

statistical error is the main contribution to the structural

uncertainty. This fact is routinely ignored or is explained by

crystal-to-crystal variations. More recently, it has been pro-

posed that systematic errors in crystal structures far exceed

the statistical errors arising from variation in the underlying

diffraction data. The instability of the refinement process

leading to model degeneracy and the heterogeneity of possible

models owing to anharmonic motion have been cited as

possible sources of such systematic error.

Here, it is proposed that the problem lies in the r.m.s.

distance measure itself. The Cruickshank DPI and other

measures of coordinate uncertainty refer to the positional

error of an ‘average atom’ or, more specifically, a hypothetical

atom with a B factor matching the average value in the

structure. However, the r.m.s. distance will only match such an

error in the absence of outliers, when all the atoms obey the

same underlying distribution. It is well understood that this is

not the case in protein crystal structures since the positions of

atoms found in the areas of weaker density are less well

defined. Outliers will also be present when actual conforma-

tional changes do take place.

Two alternative approaches to the evaluation of the struc-

tural differences are proposed. Firstly, the percentile-based

spread (p.b.s.) is introduced and is shown to be less sensitive to

the presence of outliers than the traditional r.m.s. difference.

In the situation where a small percentage of interatomic

distances are characterized by much higher variation, the p.b.s.

is particularly accurate. If two or more groups of atoms are

present with positional variations that are comparable, the

inflation of this measure is proportional to the fraction of

corresponding atom groups in the population.

More detailed analysis is possible when interatomic

distances show the presence of several groups with different

underlying variations. Direct nonlinear regression allows the

determination of the corresponding variances and the relative

number of atoms in each group. It appears that at least in some

cases these subgroups can be interpreted as more versus less

flexible atomic groups (e.g. backbone versus side chains,

surface versus protein core etc.). Because of the significant

overlap between these groups, direct assignment of individual

atoms is not always trivial.

The main conclusion proposed here is that using the r.m.s.

distance to characterize differences between crystal structures

will produce misleading results in most cases and that the

percentile-based spread should be used instead.
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